
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Short communication

New results in modelling derived from Bayesian filtering

Claudiu Pozna a, Radu-Emil Precup b,*, József K. Tar c, Igor Škrjanc d, Stefan Preitl b

a Department of Product Design and Robotics, Transilvania University of Brasov, Bd. Eroilor 28, 500036 Brasov, Romania
b Department of Automation and Applied Informatics, ‘‘Politehnica” University of Timisoara, Bd. V. Parvan 2, 300223 Timisoara, Romania
c Institute of Intelligent Engineering Systems, Budapest Tech Polytechnical Institution, Bécsi út 96/B, H-1034 Budapest, Hungary
d Faculty of Electrical Engineering, Laboratory of Modelling, Simulation and Control, University of Ljubljana, Tržaška 25, 1000 Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Received 9 November 2008
Received in revised form 9 November 2009
Accepted 13 November 2009
Available online 4 December 2009

Keywords:
Knowledge
Model
Modelling algorithm
Plausible reasoning
Simulation

a b s t r a c t

This paper suggests an original heuristic modelling algorithm expressed in terms of homogenous combi-
nations of the classical system dynamics and the Bayesian degree of truth employed in modelling. The
main benefits of the proposed approach compared to classical modelling are the increased transparency
and alleviated computational time. Two case studies, dealing with a mobile robot and an unforced pen-
dulum system, are included to exemplify and test the theoretical results. One of the case studies makes
use of the definition and calculation of several discrete plausibilities.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In essence, modelling is postulating assumptions how real-
world behaves. One may refine indefinitely the model but the
difference between the model and the real-world phenomenon,
process or dynamical system which is subject to modelling cannot
be avoided [10,22,34,45,49]. Increasing the quality of the models
has been one of the favourite research directions during the last
years. This involves the exponential growth of non-conventional
modelling based on knowledge-based systems (KBS) tools includ-
ing fuzzy logic [5,26,29,46,50,55], neural networks [1,33,51,52], ge-
netic algorithms [14,24,38,48], data mining techniques [8,9,36,56]
etc., and their merge resulting in hybrid models [2,6,7,25,30,39].

Another research direction regarding modelling deals with
measuring the approximation capability of the models. More pre-
cisely not only the behaviour of the system modelled is calculated
but also the degree of truth associated with the prediction ensured
by the model. This approach is a merge between the traditional
modelling and the Bayesian plausible reasoning rules [4] referred
in [3]. If one is able to associate a certain degree of truth (plausibil-
ity) for the results corresponding to the model, then a decision can
be taken emphasizing whether the results are either suitable or

they become discordant [13]. In addition, it will be possible to in-
crease in the appropriate moment the plausibility of the model in
terms of observations. Nevertheless, the possibility to choose the
appropriate time of observation and the need of measuring the
plausibility of the observation considered are pointed out. In the
framework of this second direction a set of rules, referred to as
plausible reasoning rules, has been proposed in [28]. The proof
has been done on the basis of the probability theory.

An epistemology has been suggested in [53] where the Bayesian
filtering equations represent the core of the human knowledge
model. One of the important aspects of this work is that it under-
lines the possibility of induction process modelling. Definitely the
plausibility by observation is highlighted. The new idea of [53] is to
use the concept of measuring the plausibility and offer an example
regarding the increase of the degree of truth by observation. The
results in causal reasoning [40] can be quoted in the same
direction.

The approach based on just Bayesian rules has various applica-
tions including the analysis of generalization [47] or rational think-
ing [19] and econometrics [54]. The engineering applications are
reported in data fusion [41], actuators control [32] and the mobile
robotics field involving robust perception and risk assessment in
highly dynamic environments [11,12].

Models which combine the plausible reasoning with traditional
modelling have been proposed in [41]. It is important to highlight
the practical aspects of this approach because the authors have
constructed models based on Bayesian filtering. The models are
implemented in real-time systems and emphasize a plausible
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reasoning problem construction. The structure of such a construc-
tion is important and it consists of two levels, the problem descrip-
tion and the question. The first level contains also two parts, the
specification of the model and the identification of its parameters.
The main drawback of this construction is its computational cost.
However the structure of the problem construction is suitable for
a plausible reasoning expert but it is difficult for an engineer
who is usually familiar only with traditional modelling.

The first aim of this paper is to give a new and attractive
derivation of Bayesian filtering equations for the case of discret-
ized probability measures. The derived forms of the equations
hold even for partially ordered sets rather than probability mea-
sures. However use is made of generally acknowledged valid
probability measures in the illustrative examples offered in the
paper.

The second aim is to suggest an algorithm that will enable
gaining knowledge on system dynamics expressed as the set of
vectors with two elements, the behaviour of the system (the out-
put of the system i.e. its dynamic response) and the plausibility
(the degree of truth) of its result. That set of vectors is defined
as follows:

yi

P yið Þ

� �����
i¼1;n

( )
; ð1Þ

where yi represents the output of the dynamical system which is
subject to modelling, P(yi) is the plausibility of the sentence ‘‘the
output of the system has the value yi” and n stands for the total
number of model iterations with the iteration index i. This algo-
rithm is referred to as modelling algorithm and the third aim of this
paper is to simulate its behaviour.

The paper is organized as follows in order to achieve the three
aims. The following section is focused on the definition of the
model which combines the classical state-space representation
of the dynamical model with the plausibility of its result i.e. the
system output. Next, Section 3 is dedicated to the new heuristic
modelling algorithm. Section 4 validates the theoretical approach
by the presentation of two case studies, and Section 5 concludes
the paper.

2. Model elements

The model elements to be constructed as follows are defined
in terms of (1). This section will treat aspects concerning that def-
inition by presenting the homogenous combination between the
classical state-space model characterizing the system dynamics
and the plausibility of its results obtained by Bayesian filtering.
The Section consists of two parts, the first one is focused on the
computation of output and output plausibility and the second
one presents the computation of the state vector and its
plausibility.

The theoretical aspects regarding the plausibility in modelling
are extracted from [28]. They are formulated in terms of the points
1 and 2:

1. The representation of plausibility is given by the plausi-
bility function

p : U! ½0;1�; pðAjXÞ ¼ y;

where U is an ordered set of sentences defined over a lin-
ear normed space and pðAjXÞ is a continuous and mono-
tonic function which assigns a certain degree of truth to
the sentence A under the condition that the sentence X
is true.

2. The consistency of the common sense requires that the
function p should fulfil the following properties:

p ABjXð Þ ¼ p AjXð Þp BjXð Þ;
p AjXð Þ þ p :AjXð Þ ¼ 1;
p Aþ BjXð Þ ¼ p AjXð Þ þ p BjXð Þ � p ABjXð Þ;
p AijXð Þð Þ ¼ 1=n; i ¼ 1;n;

where fAigi¼1;n is a complete set of mutually exclusive sentences.

Four comments are highlighted in relation with 1 and 2, to be
presented as follows. First, by consistency we consider:

� Each possible way of reasoning concerning a certain sen-
tence must lead to the same result.

� All equivalent sentences have an equal degree of
plausibility.

� In order to obtain the plausibility of a sentence one must
account for all available evidence.

Second, the plausibility can involve:

� A priori sentences. For example, the plausibility of the
sentence ‘‘the output of the system will be y” can take
a value which is nonzero although a posteriori the output
of the system is z, because it is known that the model is
an approximation of the reality in which unknown dis-
turbances may occur.

� A posteriori sentences. For example, the plausibility of
the sentence ‘‘the output of the system is y” can take a
value which is nonzero even it has been measured that
the output value is z, because it is known that the sensors
are subject to disturbances.

Third, according to [15–17] the plausibility theory can be
viewed as a generalization of the probability theory in terms of
replacing the probability measure by a partially ordered set. Hence,
if the chosen set meets the Kolmogorov axioms (related to the
points 1 and 2 presented before), the resulting theory is equivalent
to the probability calculus. With this regard, the probability theory
is well established in model construction and identification. A
great advantage of Bayesian statistics applied here is that it offers
a way how to test the validity of the modelling assumptions men-
tioned in Section 1 in the light of data. Thus, the model construc-
tion is reduced to the choice of model structure in the considered
approach.

Fourth, the plausibility and the probability have the same axi-
omatic basis and the main difference of these concepts is episte-
mological. In connection with the epistemological aspects of the
concept of probability it may be noted that probabilities have been
accepted in [27] as measurable physical quantities e.g. masses or
velocities. The real basis of this philosophy was the unlimited
repeatability of certain experiments. In other words, a priori one
can say ‘‘the probability or the plausibility of the sentence ‘‘the dice
will be 1” takes the value 1/6” but a posteriori it is not suitable to
say ‘‘the probability of the sentence ‘‘the dice is 1” is. . .”.

The plausibility will be used in the sequel as connected to the
disturbances. This point of view will be employed in both model-
ling and measurement.

2.1. Computation of system output, output estimation and plausibility
of output measurement

The accepted dynamical systems can be modelled in the general
multi input-multi output (MIMO) case by the following state-space
mathematical model:

_x ¼ fðx;uÞ
y ¼ gðx;uÞ

�
; ð2Þ
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where x 2 Rn is the system state vector, u is the system input vec-
tor, y stands for the system output vector and f and g represent gen-
erally nonlinear vector functions. Without reducing the generality
of the algorithm mentioned before, the case of single input-single
output (SISO) linear time-invariant (LTI) systems will be considered
in this paper, so (2) can be expressed in its particular form

_x ¼ Axþ bu

y ¼ cT xþ du

�
; ð3Þ

with A 2 Rn�n, b 2 Rn�1, c 2 Rn�1, d 2 R and the superscript T de-
notes matrix transposition.

The computation of system output relies on (3) making use of
analytical or numerical methods. Since the analytical ones are
rather complex even in case of higher-order SISO LTI systems,
the numerical methods are preferred. That is the reason why the
first-order differential equations in (3) will be transformed into dif-
ference ones:

xi�xi�1
Dt ¼ Axi�1 þ bui�1

yi ¼ cT xi þ dui

�
; ð4Þ

equivalent to the recurrent equations:

xi ¼ A�xi�1 þ b�ui�1

yi ¼ cT xi þ dui

�
; A� ¼ ADt � I;b� ¼ bDt; ð5Þ

where I 2 Rn�n is the unity matrix and Dt represents the sampling
time. Using (5) one may compute iteratively the values of the state
vectors xi; i ¼ 1;n. The initial state vector of the dynamical system
x0 and the input ui are needed in order to do those iterations.

At this level it is intended to improve the quality of the model
(5) by including the unknown or eluded aspects as mentioned ear-
lier. All these aspects are expressed by the output disturbances pest

i .
Inserting the disturbances will transform the output of the system
into the estimated output. The connection between the system
output and the output estimation is

yest
i ¼ yi þ pest

i ; ð6Þ

where yest
i is the output estimation i.e. the output computed with

modelling disturbance accounted for, yi is the output of model (5)
with no disturbances considered in this model and pest

i stands for
uncertainty or output disturbance.

The value of the disturbance is not known a priori but one may
obtain by experiments the statistical distribution of pest

i , referred to
as Pðpest

i Þ. A discrete statistical distribution function is defined with
this respect:

Pðpest
i Þ ¼ fPðpest

i;j Þjj ¼ 1;mg; ð7Þ

with m – the number of elements in the domain of P. Specifically,
Pðpest

i;j Þ is the truth value of the sentence ‘‘at iteration i the system
output is yj”, where yj is an element belonging to the output do-
main. Since (6) results in

yest
i � yi ¼ yest

i � cT xi þ dui�1
� �

¼ yest
i � cT A�xi�1 þ b�ui�1ð Þ � dui�1; ð8Þ

it is justified to accept that:

P pest
i

� �
¼ P yest

i � yi

� �
� P yest

i j þ xi�1
� �

; ð9Þ

where (9) highlights that the degree of the plausibility of yest
i in the

condition of accepting that the state vector xi�1 equals the statistical
distribution of the model uncertainty. In addition, making use of the
Bayesian plausible reasoning rules [4], Pðyest

i Þ can be computed in
terms of

P yest
i

� �
/
X
xi�1

P xi�1

� �
P yest

i jxi�1
� �� �

; ð10Þ

where: Pðyest
i Þ – the plausibility of the output estimation, Pðxi�1Þ –

the plausibility of the state vector xi�1, Pðyest
i jxi�1Þ – the plausibility

of the estimated output when the state vector xi�1 is known, / –
symbol standing for proportionality.

Doing the observation means that the system output is mea-
sured and the process of measurement yields the measured output
ymeas

i . To measure means to use a sensor that can be characterized
also by a mathematical model according to

ymeas
i ¼ yest

i þ e yið Þ þ pmeas
i ; ð11Þ

where eðyiÞ is the sensor error function and pmeas
i is the measure-

ment disturbance. This value is unknown but its statistical distribu-
tion, Pðpmeas

i Þ, is in fact known by experiments:

P pmeas
i

� �
¼ P ymeas

i � yest
i � e yið Þ

� �
� P ymeas

i jyest
i

� �
: ð12Þ

The interpretation of (12) is that the statistical distribution of
measurement disturbance equals the plausibility of the measured
output ymeas

i when the estimated value of the output yest
i is known.

Use is made again of the Bayesian plausible reasoning rules leading
to

P ymeas
i

� �
/ P yest

i

� �
P ymeas

i jyest
i

� �
; ð13Þ

where: Pðymeas
i Þ – the plausibility of the output measurement, Pðyest

i Þ
– the plausibility of the output estimation, Pðymeas

i jyest
i Þ – the plausi-

bility of the measured output when the output estimation is as-
sumed to be known.

Some remarks are outlined in relation with the results pre-
sented above. First, a distribution of output estimation and mea-
surements has been obtained using (10) or (13). Second, the
degree of truth of each sentence ‘‘at iteration i the estimated or
the measured output is yj” has been calculated. This result repre-
sents the second element in the vectors defined in (1), and the first
element in those vectors is the more plausible result yj. Definitely,
from all possibilities j ¼ 1;m the one that gives the maximum de-
gree of truth of the mentioned sentence is selected. Since (10) in-
volves the plausibility of the dynamical system state vectors, this
aspect needs also further discussion.

2.2. Computation of state vectors

It is important to outline that the state vector of the dynamical
system is used in (10). This requires that the state vectors xi�1

should be known before computing yest
i and ymeas

i . Usually an obser-
ver is used to compute the current state vector xi from the values of
ymeas

i and ui. The observer design is based on (5) and makes use of

si ¼ F�si�1 þ G� ymeas
i ui½ �T

xcom
i ¼ Hsi þ J ymeas

i ui½ �T

(
; ð14Þ

with the matrices and vectors si 2 Rnx1, F� 2 Rn�n, G� 2 Rn�2,
H 2 Rn�n, J 2 Rnx2. Similarly to (5), the quality of the observer
model can be increased by adding the model disturbance:

xi ¼ xcom
i þ pest

i ; ð15Þ

where xi is the state vector of the dynamical model, xcom
i represents

the computed state vector associated with the dynamical model
and pest

i stands for a disturbance vector. Each element in pest
i is com-

puted as function of the output disturbance pest
i .

The statistical distribution of the model disturbance pest
i is

known. Under these conditions, straightforward calculations
regarding (14) and (15) will result in

xi � xcom
i ¼ xi �H F�si�1 þ G ymeas

i ui½ �T
� 	

� J ymeas
i ui½ �T : ð16Þ

Therefore the plausibility of the state vector xi is known accept-
ing that the state vector xi�1 and the output ymeas

i are known:

184 C. Pozna et al. / Knowledge-Based Systems 23 (2010) 182–194
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P pest
i

� �
¼ P xi � xcom

i

� �
� P xijxi�1; ymas

i

� �
: ð17Þ

Concluding, the application of the Bayesian plausible reasoning
rules will lead to

P xið Þ /
X
ymeas

i

P ymeas
i

� �X
xi�1

P xi�1ð ÞP xijxi�1; ymeas
i

� �� �
; ð18Þ

where PðxiÞ is the plausibility of the state vector xi, Pðxi�1Þ is the
plausibility of the state vector xi�1, Pðymeas

i Þ is the plausibility of
the measured output ymeas

i and Pðxijxi�1; ymeas
i Þ is the plausibility of

the state vector xi when xi�1 and ymeas
i are known.

The result expressed in terms of (18) completes the previous
outcomes presented in (10) and (13) because it offers the possibil-
ity to compute the plausibility of the state vector. In order to make
these results more intelligible and more suitable the next Section is
devoted to the development of a modelling algorithm in the Bayes-
ian filtering framework.

3. Modelling algorithm

As shown in the previous section the plausibility is based on
statistical distributions. That result can be interpreted as after a
statistical analysis of the experimental data one may choose one
of the well-known distributions [18,35]. One short presentation
with this regard is summarized in Table 1.

Gaussian distributions are generally the most frequently used
ones [20,37]. Without reducing the generality of the modelling
algorithm to be presented in the sequel, only these distribution
types will be accepted and expressed as

P pi;j

� �
¼ N exp �

p2
i;j

2r2

 !
; ð19Þ

with: pi;j – the (independent) variable of the considered distribu-
tion, Pðpi;jÞ – the plausibility of the variable pi;j, r – the distribution
variance, i ¼ 1;n – the iteration index employed in the computation
of the output, j ¼ 1;m is the index of the current element in the set
on which distribution is defined with a total number of m elements
of this set, and the parameter N is obtained in terms of

Xm

j¼1

P pi;j

� �
¼ 1: ð20Þ

Since the Gaussian distribution is defined for any real pi;j, one
challenge is to choose an appropriate domain which will not lose
information and will also admit a convenient computational time.
The following condition has been imposed to solve this problem:

min
j

P pi;j

� �� �
max

j
P pi;j

� �� � ¼ 5%; j ¼ 1;m: ð21Þ

Using (21) the width of the definition domain D, referred to as
l(D), results as follows as related to the distribution variance r
(Fig. 1):

lðDÞ ¼ 2
ffiffiffi
6
p

r: ð22Þ

Since the simulation domain D�, with yi 2 D�, is larger than D i.e.
lðD�Þ > lðDÞ and the distribution must be defined over this domain,
the distribution Pðpi;jÞ has been extended by inserting zero ele-
ments according to Fig. 2 and

Pðpi;jÞ ¼ 0;8pi;j 2 D� n D: ð23Þ

In order to accomplish one of three aims of this paper consisting
of an algorithm offering knowledge on system dynamics, the pre-
vious results must be analyzed and appropriate mathematical
forms should be expressed. Also, because the main drawback of
the plausible model is its computational time, mathematical forms
which will decrease the computational time will be derived in the
sequel. With this regard the first step is to define a less dense dis-
tribution (23). In the same context, the calculations start with (10)
that can be re-expressed as

P yest
i;j

� 	
/
X
xi�1;j

P xi�1;j
� �

P yest
i;j jxi�1;j

� 	� 	

¼ P yest
i;1 jxi�1;1

� 	
P yest

i;1 jxi�1;2

� 	
. . . P yest

i;1 jxi�1;m

� 	h i
� P xi�1;1
� �

P xi�1;2
� �

. . . P xi�1;m
� �� �T

: ð24Þ

Next, (24) can be transformed into the following matrix form:

Table 1
Frequently used distributions.

Distribution Distribution laws, average and
dispersion

Comments

Binomial PnðkÞ ¼ Ck
npkð1� pÞn�k

;

l ¼ np;

r2 ¼ npð1� pÞ

The distribution is used when the number of experiments and the variety of results is small. Example: The 6 points
dice. Pn is the distribution law; l is average; r is the dispersion

Poisson
wnðkÞ ¼

ake�a

k!
;

l ¼ a;

r2 ¼ a

The distribution is used when we have made many experiments and the variety of results is also numerous.
Example: accidents. Wn is the distribution law; l is average; r is the dispersion

Gaussian
pðxÞ ¼ 1

a
ffiffiffiffiffiffiffi
2p
p exp �ðx� bÞ2

2a2

 !
;

l ¼ b;

r2 ¼ a2

The distribution is used when we have made many experiments and the variety of results is not so numerous.
Example: measuring errors. p is the distribution law; l is average; r is the dispersion

Uniform unðkÞ ¼ a This distribution is used when we can not obtain any knowledge on the output value. The only thing we know in
this case is that the output belongs to a particular domain but each value of the mentioned domain can be reached
with the same plausibility. Example: the probability that the dice will be on 1, 2, 3, 4, 5, 6. u is the distribution law

C. Pozna et al. / Knowledge-Based Systems 23 (2010) 182–194 185
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p yest
i

� �
/ Pestp xi�1ð Þ;

Pest ¼

P yest
i;1 jxi�1;1

� 	
P yest

i;1 jxi�1;2

� 	
. . . P yest

i;1 jxi�1;m

� 	
P yest

i;2 jxi�1;1

� 	
P yest

i;2 jxi�1;2

� 	
. . . P yest

i;2 jxi�1;m

� 	
. . . . . . . . . . . .

P yest
i;mjxi�1;1

� 	
P yest

i;mjxi�1;2

� 	
. . . P yest

i;mjxi�1;m

� 	

2
6666664

3
7777775
;

p yest
i

� �
¼ P yest

i;1

� 	
P yest

i;2

� 	
. . . P yest

i;m

� 	h iT
;

p xi�1ð Þ ¼ P xi�1;1
� �

P xi�1;2
� �

. . . P xi�1;m
� �� �T

:

ð25Þ

where pðyest
i Þ is the plausibility vector of the estimated output,

pðxi�1Þ is the plausibility vector of the state vector of the dynamical
system, and Pest ¼ Pðyest

i jxi�1Þ; i ¼ 1; n, is called the output estima-
tion matrix. It is important to highlight that Pest ¼ const i.e. if
simulations are done, the matrix can be computed before the
simulations.

A lot of multiplications can be avoided to simplify the computa-
tions in (25) making use of the fact that Pest is a band matrix.
Unfortunately this property can result in a relative alleviation of
the number of zero elements in pðyest

i Þ according to Fig. 3a which
illustrates a first method to decrease the computational time.
Fig. 3a is based on the hypothesis that the output estimation ma-

trix is a band matrix. This hypothesis is achieved for non-oscilla-
tory systems, and shows the mechanism of multiplication viz.
the decrease of the number of zero elements after each iteration.
This means that after each iteration the number of nonzero ele-
ments in pðyest

i Þ is doubled.
Another possibility is to approximate the result by using only

the maximum element in the vector pðxi�1Þ and the correspondent
column in Pest. This can be expressed under the form of the second
method to decrease the computational time presented in Fig. 3b.
The number of nonzero elements in pðyest

i Þ will be equal to that
of the nonzero elements of the k-th column in the estimation ma-
trix. Fig. 3b illustrates a diagram of the multiplication process
when the mentioned maximum is the k-th element. This means
that the number of after nonzero elements in pðyest

i Þ can be kept
constant at each iteration. Fig. 3 illustrates the variation of the
number of nonzero elements in pðyest

i Þ according to the matrix
multiplication rules (in Fig. 3a) and proposed approximation (in
Fig. 3b).

Making use of the second method (25) can be transformed into

p yest
i

� �
/ pest

k max
j¼1;m

p xi�1ð Þð Þ; ð26Þ

where pest
k ¼ Pest

1;m;k is a vector representing the k-th column in the
output estimation matrix and k; k ¼ 1;m, is the index of the maxi-
mum element in the vector pðxi�1Þ, Pðxi�1;kÞ ¼maxj¼1;mðPðxi�1;jÞÞ.

The justification for using the maximum values of pðxi�1Þ in (26)
is that in the simulations the interest is focused on the value of the
output which has the maximum plausibility as it will be exempli-
fied and illustrated in the sequel. Using this approximation the
plausibility value is not modified. However this aspect does not af-
fect the ability of decision making on the acceptance of our results
because the minimum value of the confidence, PðyiÞmin, is defined
in terms of this approximation and included in the suggested mod-
elling algorithm.

The proposed approach applied to the matrices in (3) results in
the substitution of ðdþ 1Þ2 multiplications and d2 additions by d
multiplications at each iteration. Therefore the complexity of the
algorithm will be reduced.

The next step deals with the transformation of (13) into its
equivalent expression:

P ymeas
i;1

� 	
P ymeas

i;2

� 	
. . . P ymeas

i;m

� 	h i
/ P ymeas

i jyest
i;1

� 	
P yest

i;1

� 	
P ymeas

i jyest
i;2

� 	
P yest

i;2

� 	
. . . P ymeas

i jyest
i;m

� 	
P yest

i;m

� 	h i
:

ð27Þ

Therefore, introducing the output measurement matrix Pmeas:

Pmeas ¼

P ymeas
i;1 jyest

i;1

� 	
P ymeas

i;1 jyest
i;2

� 	
. . . P ymeas

i;1 jyest
i;m

� 	
P ymeas

i;2 jyest
i;1

� 	
P ymeas

i;2 jyest
i;2

� 	
. . . P ymeas

i;2 jyest
i;m

� 	
. . . . . . . . . . . .

P ymeas
i;m jyest

i;1

� 	
P ymeas

i;m jyest
i;2

� 	
. . . P ymeas

i;m jyest
i;m

� 	

2
6666664

3
7777775
; ð28Þ

the generalization of (13) becomes:

p ymeas
i

� �
/ diag pmeas

r

� �
p yest

i

� �
; ð29Þ

where pmeas
r ¼ Pmeas

r;1;m is a vector equal to the r-th line in the measure-
ment matrix Pmeas and r; r ¼ 1;m, is the index of the output mea-
surement in the domain of y. It should be highlighted that
Pmeas ¼ const and Pmeas can be computed before the simulation,
too. Summarizing, (25) and (29) lead to

p ymeas
i

� �
/ diag pmeas

r

� �
Pestp xi�1ð Þ: ð30Þ

The following approximation of (30) can be obtained if (26) is
employed to approximate (25):

Fig. 1. Distribution Pðpi;jÞ versus pi;j for pi;j 2 D.

Fig. 2. Distribution Pðpi;jÞ versus pi;j for pi;j 2 D� .
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p ymeas
i

� �
/ diag pmeas

r

� �
pest

k max
j¼1;m

xi�1ð Þð Þ: ð31Þ

Once again this approach applied to the matrices in (3) results
in the substitution of ðdþ 1Þ2 multiplications and d2 additions by
d multiplications at each iteration (Fig. 3).

The focus will be now on (18), where the second sum can be ex-
pressed asX
xi�1

P xi�1ð ÞP xi;jjxi�1;ymeas
i;j

� 	� 	

¼ P xi;jjxi�1;1;ymeas
i;j

� 	
P xi;jjxi�1;2;ymeas

i;j

� 	
. . . P xi;jjxi�1;m;ymeas

i;j

� 	h i
� P xi�1;1

� �
P xi�1;2
� �

. . . P xi�1;m
� �� �T

; ð32Þ

and it is transformed further intoP
xi�1

P xi;1jxi�1;ymeas
i;1

� 	
P xi�1ð Þ

� 	
P
xi�1

P xi;2jxi�1;ymeas
i;2

� 	
P xi�1ð Þ

� 	
. . .P

xi�1

P xi;mjxi�1;ymeas
i;1

� 	
P xi�1ð Þ

� 	

2
66666664

3
77777775
¼Psta

j p xi�1ð Þ;

Psta
j ¼

P xi;1jxi�1;1;ymeas
i;j

� 	
P xi;1jxi�1;2;ymeas

i;j

� 	
. . . P xi;1jxi�1;m;ymeas

i;j

� 	
P xi;2jxi�1;1;ymeas

i;j

� 	
P xi;2jxi�1;2;ymeas

i;j

� 	
. . . P xi;2jxi�1;m;ymas

i;j

� 	
. . . . . . . . . . . .

P xi;mjxi�1;1;ymeas
i;j

� 	
P xi;mjxi�1;2;ymeas

i;j

� 	
. . . P xi;mjxi�1;m;ymeas

i;j

� 	

2
6666664

3
7777775
;

j¼1;m: ð33Þ

Finally the use of (18) and (33) results in

p xið Þ / Pstap ymeas
i

� �
;

Psta ¼ Psta
1 p xi�1ð Þ Psta

2 p xi�1ð Þ . . . Psta
m p xi�1ð Þ

� �T

¼ Pstap xi�1ð Þ;Psta ¼ Psta
1 Psta

2 . . . Psta
m

� �T
;

p ymeas
i

� �
¼ P ymeas

i;1

� 	
P ymeas

i;2

� 	
. . . P ymeas

i;m

� 	h iT
; ð34Þ

with Psta ¼ const – the state observation matrix, which can be com-
puted before the simulation.

Two comments are outlined in relation with (34). First, because
the measurements are not done and it is intended to continue the
estimation of the output, (34) may be used in terms of replacing
the measured output by the estimated one:

p xið Þ / Pstap yest
i

� �
: ð35Þ

Second, according to the approximation method presented be-
fore and illustrated in Fig. 3b, the computational time can be re-
duced in (34) by transforming it into its approximated version:

p xið Þ / psta
h max

j¼1;m
p ymeas

i

� �� �
; ð36Þ

where the vector psta
h ¼ Psta

1;m;h stands for the h-th column in the ma-
trix Psta and h is index of the maximum element in the vector
pðymeas

i Þ. In other words, Pðymeas
i;h Þ ¼maxj¼1;mðPðymeas

i;j ÞÞ.
The combination between the plausible reasoning formalism

and the traditional dynamical modelling allows obtaining the
dynamical system output and the degree of truth (the plausibility)
of the result. The combination can be defined, as mentioned in Sec-
tion 1, like knowledge on system dynamics expressed in terms of
the set of vectors

yi

P yið Þ

� �����
i¼1;n

( )
¼

yi;v

P ymeas
i;v

� 	
2
4

3
5ji¼ 1;n;P ymeas

i;v

� 	
¼max

j¼1;m
P ymeas

i;j

� 	� 	8<
:

9=
;;
ð37Þ

where i; i ¼ 1;n, is the iteration index used in the proposed model-
ling algorithm. In addition, the two components of the knowledge
on system dynamics can be illustrated in Fig. 4. One may remark
that the knowledge on system dynamics is a homogenous result be-
cause both elements in the vectors in (37) are obtained from the
plausibility distribution of system behaviour viz. system output. It
must be emphasized that this is a more comprehensive result than
just the system output itself because it associates the designer’s de-
gree of confidence in this value, and this idea has been incorporated
in the proposed algorithm. The strategy of the modelling algorithm
starts with setting a certain minimum value of confidence in the
system output, PðyiÞmin. Then the model is run until the confidence
reaches its minimum value. Next, in order to continue, measure-
ments are necessary because the plausibility of the results will
increase.

Since the crisp values of plausibility are needed in the simula-
tion the proportionality relations derived in this section must be
transformed into equations. In order to do this the vectors will
be normalized after each iteration according to (38)–(40):

p yest
i

� �
¼

p yest
i

� �
Pm

j¼1pj yest
i

� � ; i ¼ 1; n; ð38Þ

p ymeas
i

� �
¼

p ymeas
i

� �
Pm

j¼1pj ymeas
i

� � ; i ¼ 1; n; ð39Þ

p xið Þ ¼
p xið ÞPm
j¼1pj xið Þ

; i ¼ 1;n: ð40Þ

The flowchart of this iterative algorithm is presented in Fig. 5.
The following comments concerning the steps of the algorithm
are pointed out:

Fig. 3. Two methods to decrease the computational time: nonzero elements in pðyest
i Þ for matrix multiplication rules (a) and proposed approximation (b).
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	 Set the initial data:
� identify the model parameters and write the state-space

model (5),
� do experiments leading to the estimation matrix Pest,
� do computations yielding the state matrix Psta,
� choose a sensor, do experiments and set the output mea-

surement matrix Pmeas,
� set an acceptable plausibility for the output PðyiÞmin,
� set an input signal ui.

	 Compute the output estimation:
� make use of (25) or (26) and compute the estimation vec-

tor pðyest
i Þ,

� employ (38) to normalize the vector pðyest
i Þ,

� if the plausibility of the results is acceptable i.e.
PðyiÞP PðyiÞmin, then continue with the state estimation
process, else do measurements.

	 Do the output measurements:
� make use of (30) or (31) and compute the measurement

vector pðymeas
i Þ,

� employ (39) to normalize the vector pðymeas
i Þ,

� if the plausibility of the results is acceptable i.e.
PðyiÞP PðyiÞmin, then continue with the state estimation
process, else do measurements.

	 Do the state estimation:
� if measurements have been done, then make use of (35)

or (36) and compute the plausibility vector of the state
vector of the model pðxiÞ,

� if no measurements have been done, then make use of
(35) and compute the state of the model pðxiÞ,

� employ (40) to normalize the vector pðxiÞ.
The key idea is to iterate the algorithm until the confidence in

the predicted output reached the desired value. The degrees of
freedom in the algorithm are represented by the initial data. There-
fore it is guaranteed that the predicted output will always increase
PðyiÞ over the desired level and the algorithm will not enter any
infinite loop.

4. Case studies

This Section is dedicated to the validation of the heuristic mod-
elling algorithm proposed in Section 3 by two case studies.

We have chosen the first case study because it is a non-oscilla-
tory system and the state, estimation and measurement matrices
are band matrices. This means that we have been able to exemplify
our proposed algorithm with or without the proposed approxima-
tion. The second case study is an oscillatory system. The reason of
that additional case presentation is to give a clear picture of the
proposed algorithm. That is also the reason why in the first case
study we have chosen a Gaussian distribution and in the second
case study a uniform one.

In the first case study it will be shown that if a model is used
iteratively, then the plausibility of results will decrease. It is obvi-
ous that using iteratively a model the confidence in results will be
smaller and smaller. The knowledge on system dynamics sug-
gested in this paper offers one tool to measure the confidence in
results.

Another important issue concerns the measuring effect. Abso-
lutely, the confidence in results increases by measuring. With this
regard, the knowledge on system dynamics provides one mathe-
matical tool to measure this increase concerning the confidence
in results.

Contrarily, since the second case study concerns a system which
converges to a particular value, it will be shown that during the
simulation the plausibility of the result increases when the system
is closer to the equilibrium state.

4.1. Case study 1

The system studied in this case study is represented by the sim-
plified model of a mobile robot with the block diagram presented
in Fig. 6. The model parameters are the mobile mass m = 1 kg
and the viscous friction b = 0.1 N s2/m. The model input is the con-
stant force u = 1 N and the model output is the robot speed x2. The
speed can be measured using a sensor but the position x1 of the
vehicle robot must be computed.

The dynamical model of the robot can be characterized in terms
of either the differential equations (continuous time state-space
model)

_x ¼
0 1
0 �0:1

� �
xþ

0
1

� �
u

yi ¼ 0 1½ �x ; ð41Þ

where x ¼ x1 x2½ �T is the robot state vector, or the recurrent equa-
tions (discrete time state-space model)

xi ¼
1 Dt

0 1� 0:1Dt

� �
xi�1 þ

0
Dt

� �
u

yi ¼ 0 1½ �xi

; ð42Þ

where xi ¼ xi;1 xi;2½ �T is the robot state vector at the i-th iteration,
xi;1, and xi;2 stand for the position and the velocity of the robot,
respectively, at the i-th iteration. The initial state vector of the sys-
tem is accepted to be x0 ¼ 0 0½ �T and the value of the sampling
time is set to Dt ¼ 0:5s. In order to define the discrete plausibility
distribution the following values have been chosen:
xi;1 ¼ 0:1l; l ¼ 0;n, xi;2 ¼ 0:1l; l ¼ 0;n, n ¼ 200.

The statistical distribution of output disturbancePðpestÞ, the sta-
tistical distribution of measurement disturbance PðpmeasÞ, the sen-
sor error function eðyÞ and the statistical distribution of state
vector disturbance PðpstaÞ have been set as follows:

P pest
� �

/ exp � pestð Þ2

2 0:2ð Þ2

 !
; P pmeasð Þ / exp � pmeasð Þ2

2 0:2ð Þ2

 !
;

e yð Þ ¼ 0:5; P psta
� �

/ exp � pstað Þ2

2 0:2ð Þ2

 !
:

ð43Þ

Fig. 4. The two components of knowledge on system dynamics.
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The knowledge on system dynamics is illustrated in Fig. 7
accepting the conditions of no measurements during the simula-
tion process. The results have been obtained after eight iterations
and a Gaussian distribution has been plotted per iteration.

One may observe that the plausibility decreases. Although this
information is expected and obvious, the importance of the sug-
gested algorithm is that the degree of confidence can be measured
and decisions can be taken according to the observations. Fig. 8
illustrates the knowledge on system dynamics if several measure-
ments are done. The results presented in Fig. 8 have been obtained
for four iterations. After a certain velocity has been computed three
successive measurements were done, and the computed value of
the output is confirmed each time a measurement was done.
Fig. 8 suggests that the measurement will increase the confidence
in results. That information is obvious, but the advantage of the
new algorithm is the possibility to measure the increase in plausi-
bility and make decisions based on it.

Next, Fig. 9 shows a comparison between the knowledge on sys-
tem dynamics in two cases, simulation without (in Fig. 9a) and

with (in Fig. 9b) the proposed approximation described in (30)
and (36). The curves in Fig. 9 have been obtained for 4 successive
iterations. One iteration consists of estimations followed by mea-
surements; two plausibility distributions are plotted after each
iteration.

The simulations in both cases deal with the following sequence
of operations:

– the transitions from the state vector xi�1 to the state vector xi,
– measuring i.e. digital simulation of this process, and
– computing the state vectors.

A comparison of these results reveals that no differences be-
tween the system output yi can be observed, but a careful anal-
ysis can highlight the differences between the plausibility
degrees P(yi). One of the main benefits of the proposed approx-
imation technique is the decreasing of the computational time.
That time decrease can be assessed and illustrated by the de-
crease of the number of elementary arithmetic operations. In
this case study using (25) for d=10 (Fig. 3) leads to the results
presented in Table 2.

Fig. 10 points out a comparison between the system outputs yi

for three types of simulations: using the differential Eq. (41), the
recurrent Eq. (42) and extracting the output from the knowledge
on system dynamics.

The errors between the models based on differential and recur-
rent equations can be alleviated by decreasing Dt. The results ob-
tained from the knowledge on system dynamics track the results
obtained from the model based on differential equations. Finally
Fig. 11 illustrates the simulation results according to the proposed
algorithm obtained for setting the parameter PðyiÞmin ¼ 0:1. The
simulation starts with computing the estimated velocity and doing

Fig. 5. Flowchart of modelling algorithm.

Fig. 6. Block diagram of mobile robot.
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several iterations (five in the accepted case) until the plausibility of
the output decreased bellow the confidence value (0.1 in this case).
Next, a measurement was done in order to increase the plausibility
of our results. That succession has been repeated two times. It is
important to note that the algorithm sets automatically the mo-
ment when the measurement should be done in order to obtain
trusted results.

4.2. Case study 2

The second case study considers the unforced pendulum sys-
tem. The evolution of the output (the angular position of the pen-
dulum) is caused by the initial conditions of the pendulum
including its initial position. This example has been chosen due
to its special behaviour that makes the output converge to an equi-
librium state (position).

The dynamical model can be derived in terms of (41) using the
definitions of parameters and variable according to Fig. 12:

ml2€q ¼ m g l sinðqÞ � b _q; ð44Þ

where m is the pendulum mass, l is the pendulum length, q is the
angular position, b is the joint viscous friction and g is the gravita-
tional acceleration, and the initial conditions are not inserted for the
sake of simplicity. The following parameters have been chosen for
this application: m ¼ 1kg, l ¼ 1m, b ¼ 0:1Nms, g ¼ 9:8m=s2.

The linearization of (44) in the vicinity of the equilibrium posi-
tion leads to the model:

ml2€q�m g l qþ b _q ¼ 0: ð45Þ

Digital simulations have been done in order to compare the re-
sults of the models (44) and (45). The digital simulation results ob-
tained for the initial conditions {qð0Þ ¼ 1, _qð0Þ ¼ 0} are presented
in Fig. 13.

It is accepted from (5) that:

qest
i ¼ qi þ pest

i : ð46Þ

The strategy will be modified in this case by the fact that the
decision on the (in)accuracy of model (45) is made and trusted
only on the basis of the envelope of the dynamical system re-
sponse. Therefore (46) will be transformed into

qest
i ¼ pest

i : ð47Þ

Fig. 7. Plausibility of output versus output for eight successive iterations.

Fig. 8. Plausibility of output versus output for three successive measurements.

Fig. 9. Plausibility of position and velocity versus position and velocity value. Comparison between the results of two simulations without (a) and with approximation: (b): x1

(. . .), x2 after measuring (- - -), x2 after estimation (___).
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The envelope of the dynamic response of the pendulum has
been decided to be employed to obtain the disturbance estimation.
The time scale has been divided up into several intervals. Each time
interval has a maximum and minimum value of the angular
position. These values represent the boundary region of the values
of the angular positions. There is no knowledge on the angular po-
sition inside a certain interval i.e. it is just known that this value is
inside the mentioned boundary region. Hence, the plausibility dis-
tribution is uniform. It is important to highlight that since the
interval length is decreasing with respect to time (the pendulum
position approaches its equilibrium position) and because the dis-
tribution is normalized, the plausibility will increase during the

time. Thus, the pendulum will converge to the equilibrium position
with respect to time and the designer will be more and more sure
on this aspect.

In order to define the discrete plausibility the time moments
t ¼ 0:1w;w ¼ 0;100, and the angle q ¼ �1þ 0:1l; l ¼ 0;20, have
been chosen and the a priori information about the envelope of
the pendulum angle has been set to qðtÞ 2 fIijTi < t 6
Tiþ1; _qðTiÞ ¼ _qðTiþ1Þ; i ¼ 1;11g, where the values of Ii and Ti can be
obtained in terms of either (45) or measurements. Furthermore,
due to the convergence the relationship Ii > Iiþ1; i ¼ 1;11, is valid.
All these aspects are illustrated in Fig. 14 by means of the defini-
tion of intervals in Fig. 14a and the plausibility for each interval
in Fig. 14b.

Next, (9) and the strategy as mentioned earlier will result in

P pest
i

� �
� P qest

i jt
� �

¼ 1
card Ikð Þ

; t 2 Tk; Tkþ1ð Þ; ð48Þ

where cardðIkÞ stands for the number of elements q 2 Ik. Accepting
the conditions presented before, (10) becomes:

Fig. 10. Comparison between three solutions: differential equation (___), recurrent
equation (- - -), model based on knowledge on system dynamics (�).

Fig. 11. Simulation results for the proposed algorithm.

Fig. 12. Definition of variable and parameters related to the unforced pendulum
system.

Fig. 13. Comparison between nonlinear (___) and linear model (- - -).

Table 2
Number of operations without and with the proposed approximation technique.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Total

Without approximation Multiplications 121 441 1681 6561 8804
Additions 100 400 1600 6400 8500

With approximation Multiplications 10 10 10 10 40
Additions 0 0 0 0 0
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P qest
i

� �
/
X

t

P tð ÞP qest
i�1jt

� �
; ð49Þ

where Pðqest
i Þ is the plausibility of the output estimation at the i-th

iteration, PðtÞ is the plausibility of the time i.e. the degree of truth
that from the initial moment a certain time interval has past and
Pðqest

i�1jtÞ is the plausibility of the estimated value of time when
the time at the iteration i–1 is known. The interpretation of (49)
states that in order to obtain an estimation of the angular position
estimations of time and next position are needed.

The final step is represented by the measurement of the posi-
tion and obtaining the plausibility of the measured position. Use
is made of (13) with this respect, where the Gaussian distribution:

P pmeasð Þ / exp � ðp
measÞ2

2ð0:75Þ2

 !
; ð50Þ

has been employed. The results consist of the output value and the
plausibility of this value as indicated in (1). Fig. 15a illustrates a
comparison between the output of the dynamical model and the
output component of the model based on knowledge on system
dynamics; the output variation versus time has been obtained by
the digital simulation of the behaviour of (44). Fig. 15b presents
the evolution of the plausibility versus time during the simulation
of the model based on knowledge on system dynamics. It must be

highlighted that the plausibility is the second component of the
knowledge on system dynamics.

Two comments are emphasized in relation with the results pre-
sented in Fig. 15. First, the comparison in Fig. 15a illustrates the
accuracy of the proposed algorithm. Second, it is important to
underline that in this case the plausibility will increase with re-
spect to time during the system evolution to the equilibrium state.

5. Conclusions

This paper merges two approaches to modelling. The first one is
the traditional modelling where assumptions are postulated on the
behaviour of a certain dynamical system. The second one is based
on the well-known Bayesian plausible reasoning rules.

Compared to other previously used combinations [11,41] our
contribution concerns the alleviation of the complexity of the mod-
el based on an original matrix-based formulation. The new model-
ling algorithm consists of three steps:

– prediction of the output (estimation),
– correction by measurement,
– computation of system’s state variables.

Each step can make use of the information computed before
simulation i.e. the output estimation matrix, the measurement ma-

Fig. 14. Definition of time intervals as part of the time scale (a) and plausibility for each interval (b).

Fig. 15. (a) Comparison between the outputs versus time computed by the differential model ( _ ) and the model based on knowledge on system dynamics (�); (b) plausibility
of output versus time.
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trix and the observation matrix aiming a low computational time.
Analyzing the computations necessarily to be done online, the
authors have proposed approximations which decrease even more
the amount of necessary computations.

The plausibility of results gives confidence in the suggested
modelling approach. It is important to highlight that the plausibil-
ity (the degree of truth) is application-dependent. According to the
proposed distributions the plausibility value depends on the dis-
turbance variance and the domain sampling. The variance depends
on the quality of the model, but the domain sampling represents
user’s choice. If the user’s option is a dense sampling the precision
of the model will increase and at the same time the (relative) plau-
sibility will decrease. This has been illustrated by means of the two
case studies.

Concluding, a particular domain of plausibility should be ac-
cepted for each model. In addition, the plausibility of two models
should not be compared generally because each domain character-
izes a certain model under a specific approach.

The heuristic modelling algorithm suggested here has been pre-
sented an application-oriented manner. Therefore the properties of
the algorithm, consistency considerations and convergence proofs
were not given. The particular choices made in the case study 1
i.e. linear state-space model with Gaussian disturbances are con-
sistent with the well accepted Kalman filter. Those choices are
backed up first by the fact that the Kalman filtering techniques
are algorithms that perform filtering on certain linear dynamical
system models to estimate the state vector. The linear models
are viewed as partially observed stochastic processes with linear
dynamics and linear observations, both subject to Gaussian noise.
Second, the Kalman filter implements a predictor–corrector type
estimation (making use of the filter time and measurement update
equations) that is optimal, similarly to our modelling algorithm, in
the sense that it minimizes the error covariance when certain con-
ditions are met. Making use of these two aspects, the method sug-
gested in this paper benefits of the well acknowledged advantages
of Kalman filtering techniques including their computational effi-
ciency and accuracy of state vector estimation. However the exten-
sions of our method to nonlinear and MIMO systems can take over
the results from Kalman filtering such as extended, unscented and
particle filtering, and the scalability should be addressed.

The limitations of the proposed method and algorithm deal
with the relatively large amount of heuristics and small number
of variables in applications. Hence future research will deal with
solving the modelling problem for complex systems with nonlin-
earities and large numbers of state variables. This must be accom-
panied by the proper definition of all variables involved and the
derivation of other approaches accounting for the vicinity of the
current position. The sensitivity analysis of results with respect
to the parameter settings is needed and may result in optimal sys-
tems [42].

Other limitation of the paper consists of the fact that it eludes
the problem of input data selection. The input data must be suffi-
ciently excitatory such that to avoid losing the information on the
dynamic behaviour of the system, and this study is worthwhile.
The results of this paper will be combined with fuzzy models to
be integrated in real-world applications [21,23,31,43,44].
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